
Packet Filtering Firewall Page 1 of 9

Packet Filtering Firewall

INTRODUCTION
Pre-requisites

TCP/IP

NAT & IP Masquerade

Packet Filters vs Proxy Servers

Firewalls make a simple decision: accept or deny
communication. There are two distinct types of firewalls:
packet filters and proxy servers. The difference between
the two types of firewalls lies in what information the
firewall uses to make the accept/deny decision. The packet
filter is the simpler of the two firewalls. The packet filter
makes its decision using network information. By network
information, I mean the information contained in the TCP,
UDP, IP, and other protocol headers. The packet filter
does not examine the data section of a packet. A proxy
server, on the other hand, operates at the application level.
For instance, an http proxy server firewall can make a
decision to accept or deny communications based on the
content of a web page. Packet filters are cheap, fast and
easy to maintain. Proxy servers can make more informed
decisions, but they are expensive, slower and much more
difficult to maintain. This lesson explains how to
implement a simple, packet filtering firewall.

Hardware

Packet filters require few hardware resources. Linux
packet filtering firewalls have been successfully run on
Intel 80386 machines with 8 MB RAM. However, some of
the more complex filtering decisions require a math
coprocessor and additional memory. Therefore I would
recommend at least a Pentium 66 Mhz with 16 MB RAM
with linux kernel 2.4.18 and later. No hard drive is
required – the packet filter can boot from floppy or CD-
ROM and mount its root directory as a ramdisk (see the
floppy firewall lesson for more information).

Jargon

The computer industry usies a lot of jargon. Excessive and
improper use of jargon presents a major obstacle to people
who want to learn about computer technology. To make
matters worse, industry people will use the same word to
mean different things in different applications, or the
different words meaning the same thing. Where ever
possible I will try to unravel the jargon and explain what
things mean. But if I use a term that you don't understand
please let me know.

Versions

This lesson was developed using the following software:

• Linux kernel 2.4.18

• iptables 1.2.5

IP Forwarding

The function of a firewall is to take packets from one
network, examine them, and retransmit them on another
network. In linux kernel jargon, retransmitting packets is
called “IP forwarding” (the terms “forwarding” and
“routing” are often mixed up – read the endnote for an
explanation). IP forwarding is built into the linux kernel,
but it is turned off. To turn IP forwarding on and off, use
the following commands:

echo “1” > /proc/sys/net/ipv4/ip_forward

echo “0” > /proc/sys/net/ipv4/ip_forward

PACKET FILTERING, NETFILTER
AND IPTABLES

In the linux 2.4 kernel, packet filtering is executed by the
netfilter module.The basic idea behind netfilter is that
incoming and outgoing packets are tested by user-specified
rules which determine what will happen to the packet.

Iptables

The security administrator uses the iptables utility to set
the rules. When we talk about configuring the firewall,
what we are really talking about is designing a set of rules
then executing them using a series of iptables
commands.. The command must be executed as root.
Iptables takes a large number of options. Options are
identified by a single or double “-” character. These
options specify what you want to do: add a rule, delete a
rule, add a chain, list rules, etc. For instance, to list all the
rules use the command:

[root@Radagast andrew]# /sbin/iptables –list
Chain INPUT (policy ACCEPT)
target     prot opt source               destination         

Chain FORWARD (policy ACCEPT)
target     prot opt source               destination         

Chain OUTPUT (policy ACCEPT)
target     prot opt source               destination         

In this case the rule table is empty because we haven't
created any rules yet.

RULES
Rules describe the security policy of the firewall. More
specifically, a rule tells the netfilter engine what to do with
a packet. Each rule has two parts: (1) a description of a
packet and (2) an action. If the packet matches the
description, then the engine performs the action. We can
also implement inverse matching, meaning that if the
packet doesn't match the description, then do the action. In
linux jargon, the description is called the criteria and the
action is called the target.

Criteria

In the TCP/IP lesson we discussed the information that
accompanies a packet. For instance, TCP segments and
UDP datagrams include information about source and
destination port. TCP segments contain connection
information in their SYN and ACK bits, and in their SYN



Packet Filtering Firewall Page 2 of 9

number and ACK number fields. IP datagrams contain
source and destination address, fragmentation information,
type of service and protocol. Ethernet frames carry source
and destination MAC address. In addition to this
information, the packet filtering software “knows” which
network interface the packet was received from (the “in”

interface) and which network interface the packet would
be transmitted on (the “out” interface). All of this
information may be used as criteria. Table 1 lists many
commonly used criteria, the iptables command switch used
to specify each criterion, and a short description of the
criterion. 

Table 1: Criteria (mostly copied from iptables man page)

In Interface -i
--in-interface

Name of an interface via which a packet is going to be received (only for
packets entering the INPUT, FORWARD, and PREROUTING chains). If
the interface name ends in a “+” then any interface which begins with this
name will match. If this option is omitted, any interface name will match.

Out interface -o
--out-interface

Name of an interface via which a packet is going to be sent (for packets
entering the FORWARD, OUTPUT and POSTROUTING chains). If the
interface name ends in a “+” then any interface which begins with this name
will match. If this option is omitted any interface will match.

Protocol -p
--protocol

The protocol of the rule or of the packet to check. The specified protocol can
be one of tcp, udp, icmp, or all, or it can be a numeric value, representing
one of these protocols or a different one. A protocol name from /etc/
protocols is also allowed. The number zero is equivalent to all. Protocol all
will match with all protocols and is taken as default when this option is
omitted.

Source Address -s
--source

Source specification. Address can be either a network name, a hostname
(please note that specifying any name to be resolved with a remote query
such as DNS is a really bad idea), a network IP address (with /mask), or a
plain IP address. The mask can be either a network mask or a plain number,
specifying the number of 1's at the left side of the network mask. Thus, a
mask of 24 is equivalent to 255.255.255.0.

Destination
address

-d
--destination

Destination specification. Similar to source address (see previous entry).

Fragment -f
--fragment

This means that the rule only refers to second and further fragments of
fragmented packets. Since there is no way to tell the source or destination
ports of such a packet (or ICMP type), such a packet will not match any
rules which specify them. When the "!" argument precedes the "-f" flag, the
rule will only match head fragments, or unfragmented packets.

Source Port --sport
--source-port

Source port or port range specification. This can either be a service name or
a port number. An inclusive range can also be specified, using the format
port:port. If the first port is omitted, "0" is assumed; if the last is omitted,
"65535" is assumed. If the second port is greater than the first they will be
swapped.

Destination Port --dport
--destination-port

Destination port or port range specification.

Syn --syn Only match TCP packets with the SYN bit set and the ACK and FIN bits
cleared. Such packets are used to request TCP connection initiation; for
example, blocking such packets coming in an interface will prevent
incoming TCP connections, but outgoing TCP connections will be
unaffected. It is equivalent to –tcp-flags SYN,RST,ACK SYN.

ICMP type --icmp-type This allows specification of the ICMP type, which can be a numeric ICMP
type, or one of the ICMP type names shown by the command iptables -p
icmp -h

MAC Address --mac-source Match source MAC address. It must be of the form XX:XX:XX:XX:XX:
XX. Note that this only makes sense for packets coming from an Ethernet
device and entering the PREROUTING, FORWARD or INPUT chains



Packet Filtering Firewall Page 3 of 9

Table 1: Criteria (mostly copied from iptables man page)

State --state Where state is a comma separated list of the connection states to match.
Possible states are INVALID meaning that the packet is associated with no
known connection, ESTABLISHED meaning that the packet is associated
with a connection which has seen packets in both directions, NEW meaning
that the packet has started a new connection, or otherwise associated with a
connection which has not seen packets in both directions, and RELATED
meaning that the packet is starting a new connection, but is associated with
an existing connection, such as an FTP data transfer, or an ICMP error.

Limit --limit rate Maximum average matching rate: specified as a number, with an optional `/
second', `/minute', `/hour', or `/day' suffix; the default is 3/hour.

--limit-burst number Maximum initial number of packets to match: this number gets recharged by
one every time the limit specified above is not reached, up to this number;
the default is 5.

Inversion

In addition to the criteria in Table 1, each criteria may be
inverted using the “!” operator. For instance, “-s
192.168.1.0/24 -j DROP” means “drop packets coming
from network 192.168.1”, but “ -s !192.168.0.24 -j DROP”
means “drop packets that don't come from network
192.168.1”.

Match Extensions

The netfilter engine was originally designed to filter using
only information from the IP header and the in/out
interface. But matching other information can be
extremely useful. Therefore the criteria that netfilter can
match has been extended – the extra criteria are called
“match extensions.” Match extensions are implemented as
separate kernel modules. The modules may be loaded in
two ways: implicitly when the “-p” or “--protocol” flag is
specified, or explicitly using “-m modulename”. For
instance, most firewalls will use rules that match TCP
segment header fields, especially destination port. To
allow http, for instance, a security administrator might
implement the following rule:

iptables -p TCP -dport 80 -j ACCEPT

The “-p TCP” option loads the TCP module, which
executes the destination port match.

MAC Address

Every ethernet card has a Media Access Control (MAC)
address. In theory, every MAC address is unique, however
some ethernet cards allow user programmable MAC
addresses. If your system includes an ethernet card, then
you may view the MAC address using the ifconfig eth0
command:

[root@Radagast andrew]# /sbin/ifconfig eth0
eth0 Link encap:Ethernet  HWaddr 00:50:BA:70:0E:BA  
     inet addr:192.168.0.1  Bcast:192.168.0.25 Mask:255.255.255.0
     UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
     RX packets:1236933 errors:0 dropped:0 overruns:0 frame:0
     TX packets:731462 errors:0 dropped:0 overruns:0 carrier:0
     collisions:22 txqueuelen:100 
     RX bytes:1664437704 (1587.3 Mb)  TX bytes:71297062 (67.9 Mb)
     Interrupt:12 Base address:0xe400 

The HWaddr field indicates the MAC address, in this case
00:50:BA:70:0E:BA. The netfilter can filter on MAC

address, which can be a potent tool to lock down
communication between specific computers on a broadcast
network.

Connection State

As we discussed in the TCP/IP lesson, most internet
applications use TCP which is a connection based
protocol. Two computers using TCP establish a connection
using SYN and ACK segments. Once the connection is
established, the computers may exchange data reliably.

There are many instances where you might want to filter
on TCP connection state information. Suppose that you
want computers on your private network to be able to read
web pages from the internet, but you don't want computers
on the internet to read web pages located on your private
network. The World Wide Web uses TCP port 80 to
transfer information. So essentially, you want to be able to
create TCP port 80 connections from your private network
to the internet, but you want to deny TCP port 80
connections from the internet to computers on your private
network. This requires the TCP connection state module,
and the rule might look like this:

iptables -A FORWARD -m state –state NEW -i $PRIVATE -j ACCEPT
iptables -A FORWARD -m state –state NEW -i $INTERNET -j DUMP

In this example, we have used local variables to replace
the interface names. Early in the firewall script there
would have been a pair of definitions such as:

PRIVATE = eth0
INTERNET = ppp0

Variables like this are very common in firewall scripts.
But back to the example. Our private network computers
can send TCP segments which create new connections, but
after the TCP modules establish the connection we expect
to exchange data. So we need a rule accepting packets for
established connections.

iptables -A FORWARD -m state –state ESTABLISHED,RELATED -j ACCEPT

If you are a good security administrator then you noticed
that I snuck the RELATED match into the preceding rule –
here's why: some TCP applications use two connections.
For instance, when you connect to another computer using



Packet Filtering Firewall Page 4 of 9

the file transfer protocol (ftp, RFC 959) you use TCP port
21 to connect from a computer on the private network to a
ftp server on the internet. When the private network user
request a file, the ftp server creates second connection
from itself to the computer on the private network. The
second connection is used to transfer the requested file.
The problem is that the firewall does not allow new
connections from the internet, so the server will not be
able to create the second connection. The RELATED
criteria matches these secondary connections that are
related to existing connections. We will allow related
connections.

Sometimes internet bad guys send bad TCP segments.
Sometimes they do this as a sneaky port scan. Sometimes
they do this to try to hijack an existing TCP connection.
These invalid TCP segments are not trying to establish
new connections, and they aren't part of an existing
connection. We can use a state matching rule to drop
invalid TCP connection attempts:

iptables -A FORWARD -m state –state INVALID

Limits

The limit match extension allows a match against the rate
at which the firewall receives packets.  For instance, the
rule 

iptables -A INPUT -m limit –limit 1/second \
                 -p TCP -dport 80-j ACCEPT

accepts one http packet per second. The limit module also
understands “/minute”, “/hour”, and “/day”. We can also
specify a burst-limit match, for instance

iptables -A INPUT -m limit –limit 1/second –limit-burst 5 \
                  -p TCP -dport 80 -j ACCEPT

accepts up to five http packets in the first second, then one
packet per second after that. The burst recharges by one
for each time unitin which the limit isn't met. For instance,
if six packets arrived in the first second, the rule would
match the first five packets but not the sixth. The burst
value is now reduced to zero, because it was entirely used.
If two packets arrived in the next second, the rule would
only match one of them, because the burst has already
been used and the average match is only one per second. If
no packets arrived in the next second, then the burst value
would recharge to one. If no packets arrived in the second
after that, then the burst value would recharge again to
two, and so on. The limit match can be used to protect a
server from syn-floods:

iptables -A INPUT -p TCP –syn \
                  -m ! limit --limit 1/s --limit-burst 4 -j DROP

There are three criteria. The first criteria is that the packet
contains a TCP SYN segment. The next two criteria are
limits, but the limits are inverted. The inverted limit means
that a match occurs if the packets exceed the limit. In other
words, if we get a burst of more than 4 SYN segments in a
second, or if we get an average of more than 1 SYN
segment per second, then netfilter gets a match.

Target

Each rule specifies criteria and a target. The target is the
action to perform if the match succeeds. Netfilter includes
four built-in targets: ACCEPT, DROP, QUEUE, and
RETURN (by convention, target names are written in
capitals). In addition, the name of a custom-defined chain
may be specified as a target (we will discuss chains later).
Extension targets may be built into the kernel or loaded as
modules – we will discuss two extension targets later in
this lesson: LOG and MASQUERADE.

• ACCEPT means that the firewall approves the
matching packet for transmission

• DROP means that the firewall has rejected the
matching packet. The packet is “dropped on the
floor”. 

• QUEUE is not covered in this lesson.

• RETURN. We will discuss the RETURN target later
in this lesson.

• LOG instructs netfilter to add an entry in the kernel
log

• MASQUERADE. This target is only valid in the
NAT table in the POSTROUTING chain. It should
only be used with dynamically assigned IP
connections: if you have a static IP address, you
should use the SNAT target. Masquerading is
equivalent to specifying a mapping to the IP address
of the interface the packet is going out, but also has
the effect that connections are forgotten when the
interface goes down. This is the correct behaviour
when the next dialup is unlikely to have the same
interface address (and hence any established
connections are lost anyway).

Example Rules

Here are some simple example rules. You should study
each example carefully. Make sure that you understand
what each argument means.

Suppose that you have a network, 204.101.3/24. You
connect this network to the internet through a firewall.
You don't want hackers on the internet pinging machines
on your network. You know that ping is implement using
the ICMP protocol, so you add the following rule:

iptables -A FORWARD -d 204.101.3.0/24 -p ICMP -j DROP

You are the sysadmin on the above network. Your firewall
has lots of rules which specify what protocols are
permitted, limits, etc, etc. But you want to create a back
door so that your personal computer at 204.101.3.4 has
unrestricted access to and from the internet. You put the
following commands near the beginning of your firewall
script:

iptables -A FORWARD -s 204.101.3.4 -j ACCEPT
iptables -A FORWARD -d 204.101.3.4 -j ACCEPT

You have implemented a wireless LAN at your office by
adding a wireless ethernet card to your linux firewall/
router. But you don't want every kid in town accessing the
internet through your system. You only have one wireless



Packet Filtering Firewall Page 5 of 9

client, and you know its MAC addresses (a0:b1:c2:d3:e4:
f5). So you add the following rule to your firewall:

iptables -A FORWARD -in-interface wlan0 -m mac \
                    –mac-source !a0:b1:c2:d3:e4:f5 -j DROP

You have a private network. Within this network you have
some Microsoft Windows workstations. The Windows
machines use Microsoft Networking. You decide that you
don't want people on the internet to read shared files on
your private network, so you use the following rule:

iptables -A FORWARD -p UDP -sport 137:139 -j DROP

 CHAINS
Most firewalls will include many rules. The rules are
organized in chains. A chain is simply an ordered
sequence of rules. The iptables engine analyzes the packet
using the first rule in the chain. If the packet matches the
criteria of the first rule, then the engine performs the action
described by the target; if the packet does not match the
criteria, then the engine goes to the next rule in the chain
(note that after performing some targets, e.g. LOG,
netfilter will go to the next rule in the chain). If the packet
“falls off the end of the chain” then netfilter behaves
differently for user-defined and built-in chains. For built-in
chains the behaviour is defined by the chain's policy.

Policy

The policy is a target defined by the iptables utility using
the -P command. For instance, the command

iptables -P FORWARD DROP

means that packets which fall off the end of the
FORWARD chain should be DROPPED. If the security
administrator fails to specify a policy for the chain, then
the filter engine uses the default policy for the chain which
is always ACCEPT, which is very bad.

If a default policy of ACCEPT is very bad, then why did
the creators of netfilter build it that way? Well, suppose
that a new linux user accidentally turns on iptables. If the
default policy were DROP, then every packet would be
discarded. Many applications use sockets between
different processes on the same machine, so even if the
machine isn't connected to the internet, an accidental
default policy of DROP with no rules to specify permitted
communications would render many important
applications useless. So the default policy is ACCEPT, and
the first thing your firewall script should do is flush the
chains and set the policy to DROP:

iptables -F FORWARD
iptables -F INPUT
iptables -F OUTPUT
iptables -P FORWARD DROP
iptables -P INPUT DROP
iptables -P OUTPUT DROP

The filter table has three built-in chains: INPUT, OUTPUT
and FORWARD. Figure 1 depicts the built-in chains. In
figure 1, the top of the diagram represents the network
interfaces (ethernet cards, modems, serial interfaces, etc).
This is where IP packets enter and exit the machine.
Packets entering the machine first go to the forwarding
process. It is important to remember the difference
between routing and forwarding. The forwarding process
compares the packet's destination IP address to the user-
defined routing table; in this way the forwarding process
assigns an output interface to the packet, or assigns the
packet to a socket on the local host. But the routing
process does not immediately retransmit the packet on that
interface. Instead, the packet enters the netfilter. If the
packet is destined for a local process then the netfilter uses
the INPUT chain. For instance, the firewall machine might
allow remote management using secure shell, and
therefore might be running the secure shell daemon as a
local process. But a firewall's job is to filter packets
between different network interfaces so almost all packets
are filtered using the FORWARD chain. If one of the rules
ACCEPTs the packet, then the packet is sent to the
network interfaces to be retransmitted. If one of the rules
DROPs the packet (or if the packet falls off the end of the
chain) then the packet goes to /dev/null.

User Defined Chains

In addition to the built-in chains, users may define their
own. The sysadmin creates new chains using the iptables
-N command. By convention, chain names always use
capital letters.

iptables -N TCP_CHAIN

After creating the new chain, the user adds it as a target to
one of the existing chains

iptables -A FORWARD -p TCP -j TCP_CHAIN

In the example above, we specify that if the packet
contains part of a TCP segment, then netfilter should
examine the packet using the rules in the TCP_CHAIN. So
now we need to add some rules to the new chain.

Figure 1: Filter Table



Packet Filtering Firewall Page 6 of 9

iptables -A TCP_CHAIN -dport 22 -j RETURN

RETURN is a special target. In a user defined chain,
RETURN tells netfilter to stop processing the packet on
this chain and return to the original chain. If there is no
original chain, i.e. if RETURN is used in a built-in chain,
then netfilter applies the default policy to the packet. We
will add some more rules to the new chain.

iptables -A TCP_CHAIN -dport 80 -j ACCEPT
iptables -A TCP_CHAIN -dport 21 -j ACCEPT
iptables -A TCP_CHAIN -dport 25 -j ACCEPT

User defined chains do not have policies. If a packet drops
off the end of a user defined chain, then netfilter continues
processing the packet using the original chain. But we can
implement a drop policy by adding a rule with an empty
criteria. An empty criteria matches everything, so the rule

iptables -A TCP_CHAIN -j DROP

will drop every packet. We add this rule to the end of the
TCP_CHAIN. Our custom chains says that TCP segments
to port 22 (secure shell) will be evaluated later in the
original chain, segments to ports 21 (ftp), 25 (smtp), and
80 (http) will be accepted, and TCP segments to all other
ports will be dropped.

Here is another example of a user defined chain.
Remember the rule to protect against SYN floods: 

iptables -A INPUT -p TCP –syn \
                  -m ! limit --limit 1/s --limit-burst 4 -j DROP

Now suppose that in addition to dropping the packets, we
want to print a warning in the kernel log. First we create
the chain:

iptables -N SYN-FLOOD
iptables -A SYN-FLOOD -m limit --limit 1/s --limit-burst 4 -j
RETURN
iptables -A SYN-FLOOD -j LOG –log-prefix “** SYN FLOOD **”
iptables -A SYN-FLOOD -j DROP

Then we add a rule to one of the built-in chains forcing
netfilter to examine all SYN packets using this new chain:

iptables -A INPUT -p TCP –syn -j SYN-FLOOD

TABLES
Chains are grouped into tables. There are three tables:
filter, NAT and mangle.

Filter Table

In the previous section, drawn in Figure 1, we talked about
the INPUT, OUTPUT, and FORWARD chains. These
chains belong to the filter table. Filter is the default table,
so if you don't specify a table then iptables will assume
that whatever you want to do (add a chain, append a rule to
a chain, etc) is being done within the filter table. If you
want to modify one of the other tables, then you must use
the iptables utility with the -t table_name option.

NAT Table

Netfilter implements NAT and IP masquerade using the
NAT table.

Mangle Table

Netfilter implements packet mangling using the mangle
table. Packet mangling is an advanced technique whereby
arbitrary TCP/UDP/IP headers may be modified. This
lesson does not cover packet mangling.

Relationship Between Tables

There are three tables, and each table has at least three
chains, so you might wonder which table gets evaluated
first, and which chain gets evaluated first in each table.
The answer is complicated: the chains from the tables are
all mixed up, so a packet might first be evaluated against
the PREROUTING chain from the MANGLE table, then
against the PREROUTING chain of the NAT table, then
the FORWARD chain of the FILTER table, then the
POSTROUTING chain of the NAT table. But it's more
complicated than that – netfilter evaluates the packet
against different chains depending on where the packet
comes from (a network interface or a local process) and
where the packet is going (a network interface or a local
process). 

The flow chart in Figure 2 illustrates the relationship
between the different tables and chains. Packets may enter
the flow in two places: packets may arrive at one of the
network interfaces at the top, or packets might be
generated by a local process (left middle). A local process
is an application that is running on the firewall, such as
secure shell. 

Once a packet has entered the flow chart, it proceeds in the
direction of the arrow to the next box. Each box represents
a chain of rules. I have colour coded the boxes: blue boxes
belong to the mangle table, yellow boxes to the NAT table
and green boxes belong to the filter table. On a firewall
most packets will enter the flow from a network interface,
so let's consider a packet as it enters the flowchart from the
top. Netfilter receives the packet from the IP module and
examines the packet using the rules in the PREROUTING
chain of the mangle table, then the PREROUTING chain
of the NAT table. Usually we don't make any changes to
the NAT PREROUTING chain - this is where netfilter
automatically looks up the packet's destination socket in
the IP Masquerade and Port Forwarding tables. If there is a
translation, then netfilter replaces the destination Internet
IP socket with the private network socket. Then the packet
goes to the IP forwarding module.

The IP routing module decides where the packet will go:
to the ip forwarding module or to a local process. If the
firewall is running local processes such as secure shell,
then some packets may traverse the FILTER:INPUT,
MANGLE:OUTPUT, NAT:OUTPUT, and FILTER:
OUTPUT chains. But typically these OUTPUT chains are
used on a workstation to provide extra security, not on a
firewall. Firewalls specialize in forwarding packets, so the
routing decision is almost always to forward the packet.
Looking at the flow chart we see that the netfilter module
will apply the rules in the FILTER:FORWARD chain, and
finally the rules in the NAT:POSTROUTING chain. Most
of the firewall's rules will be in the FILTER:FORWARD
chain – this is where we specify the default policy of



Packet Filtering Firewall Page 7 of 9

Figure 2: Relationship Between Tables

N etfilt e r A ction
   T ab le : N A T
   C h a in : P R E R OU T IN G

R o uti ng  d ec ision :
F orw ard  o r L o ca l?

N e tfilt e r A ction
   T ab le : F ILTE R
   C h ain : IN P U T

N etfilt e r A ction
   T ab le : F ILTE R
   C h ain : O U T P U T

N etfilt e r A ction
   T ab le : M ANG L E
   C h a in : P R E R OU T IN G

N etfilt e r A ction
   T ab le : M ANG L E
   C h a in : O U T P U T

N etfilt e r A ction
   T ab le : N A T
   C h ain : O U T P U T

L o ca l N e tfilt e r A ction
   T ab le : F ILTE R
   C h a in : F O R W A R D

N etfilt e r A ction
   T ab le : N A T
   C h a in : P O S T R OU T IN G

N etw ork  In te rf aces

N etw o rk s

L o c a l
P ro ce ss es

F o rw a rd



Packet Filtering Firewall Page 8 of 9

DROP and describe which packets we will ACCEPT. The
NAT:POSTROUTING chain is important because that is
where we implement IP masquerade, like this:

iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE

Suppose that eth1 is the interface to the Internet. The rule
above specifies that netfilter will implement IP
masquerade for any packet going to the Internet.

There is a general principal that your firewall should not
run any internet services. So no local processes should
generate or receive packets. And we will ignore the
mangle table. So for packet filtering firewalls the
flowchart in figure 2 can be simplified to the much smaller
chart in figure 3. 

SAMPLE FIREWALL SCRIPT
To finish off the lesson, here is a sample firewall script for
the network and firewall shown in Figure 4. Each line has
already been explained in this lesson. You should read
through the firewall script and look back through the
lesson to make sure you know what it does.

iptables -F
iptables -t nat -F
iptables -P FORWARD DROP
iptables -P INPUT DROP
iptables -P OUTPUT DROP
iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE
iptables -A FORWARD -s 192.168.0.0/24 -d 192.168.1.0/24 -j ACCEPT
iptables -A FORWARD -s 192.168.1.0/24 -d 192.168.0.0/24 -j ACCEPT
iptables -A FORWARD -s 192.168.0.0/24 -o ppp0 -j ACCEPT
iptables -A FORWARD -s 192.168.1.0/24 -o ppp0 -j ACCEPT
iptables -A FORWARD -m state –state NEW -i eth0 -j ACCEPT
iptables -A FORWARD -m state –state NEW -i wlan0 -j ACCEPT
iptables -A FORWARD -m state –state ESTABLISHED,RELATED -j ACCEPT
iptables -A FORWARD -m state –state NEW,INVALID -i eth1 -j DROP
iptables -A FORWARD -p udp –-sport 137:139 -j DROP

IPTABLES-SAVE & 
IPTABLES-RESTORE

Once you have configured your firewall, it would be nice
to have a simple way to save and restore the ruleset. Red
Hat Linux includes two simple utilities which can be used
to save and restore the rules: iptables-save and
iptables-restore.

Figure 3: Packet Filtering Firewall Flowchart

Netfilter Action
   Table: NAT
   Chain: PREROUTING

Netfilter Action
   Table: FILTER
   Chain: FORWARD

Netfilter Action
   Table: NAT
   Chain: POSTROUTING

Network Interfaces

Networks

Figure 4: Example Script Network



Packet Filtering Firewall Page 9 of 9

Iptables-save dumps the contents of the tables to
stdout. The format is not specified anywhere, but looks
vaguely like the usage of iptables. Here is the iptables-save
output after implementing the sample firewall script of the
previous section:

[root@Radagast andrew]# /sbin/iptables-save
# Generated by iptables-save v1.2.6a on Mon Apr 28 12:47:14 2003
*nat
:PREROUTING ACCEPT [2:96]
:POSTROUTING ACCEPT [4:364]
:OUTPUT ACCEPT [145:9301]
-A POSTROUTING -o eth1 -j MASQUERADE 
COMMIT
# Completed on Mon Apr 28 12:47:14 2003
# Generated by iptables-save v1.2.6a on Mon Apr 28 12:47:14 2003
*filter
:INPUT DROP [39:13970]
:FORWARD DROP [0:0]
:OUTPUT DROP [170:17598]
-A FORWARD -s 192.168.0.0/255.255.255.0 -d 192.168.1.0/
255.255.255.0 -j ACCEPT 
-A FORWARD -s 192.168.1.0/255.255.255.0 -d 192.168.0.0/
255.255.255.0 -j ACCEPT 
-A FORWARD -s 192.168.0.0/255.255.255.0 -o ppp0 -j ACCEPT 
-A FORWARD -s 192.168.1.0/255.255.255.0 -o ppp0 -j ACCEPT 
-A FORWARD -i eth0 -m state --state NEW -j ACCEPT 
-A FORWARD -i wlan0 -m state --state NEW -j ACCEPT 
-A FORWARD -m state --state RELATED,ESTABLISHED -j ACCEPT 
-A FORWARD -i eth1 -m state --state INVALID,NEW -j DROP 
-A FORWARD -p udp -m udp --sport 137:139 -j DROP 
COMMIT
# Completed on Mon Apr 28 12:47:14 2003

This output can be redirected to a file. Later, the file can
be used as input to the iptables-restore command using
redirection, like this:

# /sbin/iptables-save > firewall_rules.save
# /sbin/iptables -F
# /sbin/iptables-restore < firewall_rules.save

 RED HAT SECURITY LEVEL
CONFIGURATION

Red Hat Linux 8 includes a GUI tool called “Security
Level Configuration”. This tool provide three preset
security levels: none, medium and high. You may also
customize the security by accepting communications to
specific ports on specific interfaces. When implemented,
the tool creates a simple set of rules and used the
iptables-save command to save the rules to the /etc/
sysconfig/iptables file. When you start your computer,
the rules will automatically be loaded using the
iptables-restore command. Here is a copy of the /
etc/sysconfig/iptables file generated with security
level “high”:

# Firewall configuration written by lokkit
# Manual customization of this file is not recommended.
# Note: ifup-post will punch the current nameservers through the
#       firewall; such entries will *not* be listed here.
*filter
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
:RH-Lokkit-0-50-INPUT - [0:0]
-A INPUT -j RH-Lokkit-0-50-INPUT
-A RH-Lokkit-0-50-INPUT -i lo -j ACCEPT
-A RH-Lokkit-0-50-INPUT -p udp -m udp -s 204.101.251.1 \
                               --sport 53 -d 0/0 -j ACCEPT
-A RH-Lokkit-0-50-INPUT -p udp -m udp -s 204.101.251.2 
                               --sport 53 -d 0/0 -j ACCEPT
-A RH-Lokkit-0-50-INPUT -p udp -m udp -s 209.226.175.223 
                               --sport 53 -d 0/0 -j ACCEPT
-A RH-Lokkit-0-50-INPUT -p tcp -m tcp --syn -j REJECT
-A RH-Lokkit-0-50-INPUT -p udp -m udp -j REJECT
COMMIT


