
TCP/IP Page 1 of 5

TCP/IP

INTRODUCTION
The internet uses a variety of technologies to provide
end-to-end communication between applications on
different computers. Most applications use Transport
Control Protocol (TCP) and Internet Protocol (IP). Some
applications use User Datagram Protocol (UDP) and
Internet Control Message Protocol (ICMP). All of these
protocols use local network technologies such as
ethernet and dial up modems. This lesson will explain
many of the technical aspects of these communication
technologies.

PREREQUISITES
Home Networking

TRANSMISSION CONTROL
PROTOCOL (TCP)

TCP provides reliable, in-order delivery between two
computers. TCP is a connected protocol, which means
that TCP establishes a link between two computers,
similar to the way that a telephone establishes a link
between two people. Once the connection is established,
any data that's put in one end of the connection comes
out the other end of the connection. Like a telephone,
TCP connections are full-duplex, meaning that both
computers can send data and both will receive data sent
by the other computer.

TCP is a packet data protocol. This means that the TCP
module breaks incoming data into small chunks, called
packets (actually, TCP packets are called “segments”).
The maximum size of a TCP segment can be adjusted by
the TCP module, but must be less than 65536 bytes. The
TCP module adds a 20 byte header to the beginning of
each segment (see Figure 1), then passes this TCP
segment to the IP module for transmission.

Before an application can communicate using TCP, the
TCP module must create a connection. First, TCP
creates a socket on each computer. A socket is the end
point of a TCP connection and consists of an IP address
and a port number. Generally, port numbers correspond
to applications or services – the /etc/services file lists
valid services and their port numbers. Typically, a server
application, such as a web server, will instruct the TCP
module to create a listening socket. A listening socket
waits for another computer to contact it. A client
application, such as a web browser, creates a socket and
instructs the TCP module to connect its socket to the
listening socket on the server.

Once the sockets have been created, TCP uses a three
way handshake mechanism to establish the connection,
as shown in Figure 2. First the client socket sends a TCP
segment to the target socket with SYN set to 1, ACK set
to 0, and some number (say “x”) in the sequence field. If
the target socket is listening and intends to accept the
connection, it replies to the originating socket with a
TCP segment containing SYN set to 1, ACK set to 1,
Acknowledgement number set to x+1, and sequence
number set to some number (say “y”). Finally, the client
should confirm the connection with a TCP segment

Figure 2: TCP Connection

< 32 bits >

< 8 bits > < 8 bits > < 8 bits > < 8 bits >

Source Port Destination Port

Sequence Number

Acknowledgement Number

 TCP

Header
Length

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window Size

Checksum Urgent Pointer

Options (0 or more words)

Figure 1: TCP Header

TCP/IP Page 2 of 5

containing SYN=0, ACK=1, ACK#=y+1 and
SEQ#=x+1. The connection is now established and the
two computers may exchange data on the socket.

Port Scanning & Syn Floods

This process might seem a bit tedious, but it is very
important from a firewall point of view because bad
guys misuse SYN segments. The black hats will scan all
the target sockets at a given IP address by sending a
SYN=1 ACK=0 segment to every port. If the target
computer replies with a SYN=1 ACK=1 segment on that
port, then the bad guy knows that there is a socket
listening on the port. But they will never send the
SYN=0 ACK=1 packet, so the connection is never
opened, and often goes unlogged at the target. This is
sometimes called “ghost scanning” - bad guys can learn
about your computer without you knowing that they are
there.

Once the attacker has identified a listening socket he can
try a more serious attack - he sends a very large number
of SYN=0 ACK=1 packets from a forged IP address to a
listening port on the target computer. By “forged IP
address” I mean that the bad guy has manipulated his IP
module to insert an incorrect value in the source address
field in his IP headers. Each time the listening socket
receives a SYN=0 ACK=1 segment, the listening socket
allocates resources for a new connection and transmits a
SYN=1 ACK=1 segment. But the bad guy never replies.
When it doesn't receive a reply, the server will keep its
end of the connection open and transmit another SYN=1
ACK=1 segment. These half open connections are called
“half open connections”. Each half open connection
consumes resources (RAM, stack space, CPU cycles) on
the server; when the server uses up too much resources it
denies new connections, slows down or crashes. This
type of attack is called a SYN flood. It is very difficult
to trace the attacker because he never uses his real IP
address.

User Datagram Protocol

There may be times when an application doesn't need a
connection based protocol – maybe the application just
needs to send ten or twenty bytes of data, and doesn't
need any guarantee of delivery. For small messages that
don't require guarantee of delivery, internet applications
use the User Datagram Protocol (UDP). Like TCP, UDP
sends messages from one socket to another. Unlike TCP,
UDP does not create a connection between the two
sockets. Since it doesn't create a connection the UDP
module cannot segment application data into smaller
packets – the application must deliver data to the UDP

module in small chunks that will fit in a single datagram.
Typically datagrams are less than 100 bytes long, but
they might be as large as 65535 bytes (including the 8
byte header). Also, because there is no connection to
maintain, the UDP header doesn't need to put as much
information in the header. The UDP header is only 8
bytes long as depicted in Figure 3.

Although UDP and TCP both use ports, the assignment
of services to ports is different for the two protocols. The
/etc/services file lists services for both UDP and TCP.
Some of the more prominent applications which use
UDP are:

• trivial file transfer protocol, UDP port 69

• windows networking (netbios), UDP ports 137, 138,
and 139

• name server, UDP port 42

• network time protocol, UDP port 37

Internet Control Message Protocol

Occasionally internet gateways may need to send
messages to source computers – perhaps the destination
is unreachable, or a header field has been corrupted.
Gateways communicate with source computers using the
Internet Control Message Protocol (ICMP). ICMP is
defined in RFC 792. ICMP is a connectionless protocl –
it uses datagrams. ICMP messages are used by the IP
module, not by applications or services, so ICMP does
not use sockets. ICMP datagrams are small: a header of
8 to 20 bytes, followed by no more than 84 bytes of data.
There are six types of ICMP datagrams. The exact
format of the datagram depends on the type, but the first
byte of the datagram always identifies the ICMP type.
The types are:

• type 3: Destination Unreachable. The destination
source computer cannot be reached on the network,
or the service/protocol is not available on the
destination computer.

• Type 4. Source Quench. Packets are arriving too fast
and the gateway does not have enough buffer space
to store arriving packets.

• type 11: Time Exceeded. The Time To Live value in
the IP header has reached zero or an internet node
was unable to reassemble a fragmented packet. Time
to live is described in RFC 791. We will discuss
fragmentation later in this lesson.

< 32 bits >

< 8 bits > < 8 bits > < 8 bits > < 8 bits >

Source Port Destination Port

Length Checksum

Figure 3: UDP Header

TCP/IP Page 3 of 5

• type 12: Parameter Problem. A gateway or host
cannot process the packet because of an error in the
header parameters.

• Type 5: Redirect. The packet was sent to the wrong
gateway. A type 5 message identifies the correct
gateway.

• Type 8: Echo. A gateway or host requests an echo
reply. Used by the ping program.

• Type 0: Echo Reply. Reply to a ICMP type 8
datagram.

• Type 13: Timestamp. A gateway or host requests a
timestamp reply.

• Type 14: Timestamp reply. Reply to an ICMP type
13 datagram.

INTERNET PROTOCOL
TCP, UDP and ICMP use the Internet Protocol (IP). IP
moves data across the network. IP provides no
guarantees of service – packets might arrive at their
destination late, out of order, or may not arrive at all. IP
is said to provide “best effort” delivery. If an application
requires better quality assurance, then it is the job of the
application to provide the assurance or to use a higher
level protocol, such as TCP, which provides some
guarantees.

IP is a packet protocol. The IP modules segments
incoming data into chunks and adds a header to each
chunk to create an IP packet. The maximum size of an
IP packet is 65535 bytes, and the IP header is 20 bytes
long, so each data chunk can be no more than 65515
bytes long. But in practice the data size is much smaller
(we will discuss the Maximum Transfer Unit value later
in this lesson).

Figure 4 shows the layout of an IP header. RFC 791
describes all the fields – we will only discuss a few. The
most important fields are the source address and
destination address. We discussed IP addresses in the
Home Networking lesson. The IP addresses specify

which computer sent the packet, and which computer
should ultimately receive the packet. Protocol is another
important field. The protocol field identifies which
higher level protocol is using IP. The /etc/protocols file
lists valid protocol numbers and their corresponding
protocols. For instance ICMP is protocol 1, TCP is 6 and
UDP is 17. You should know about the fragments field,
but before we discuss fragments you must understand
the idea of a Maximum Transfer Unit.

Maximum Transfer Unit

RFC 791 defines the maximum sized datagram that can
be transmitted through the next network as the
maximum transmission unit (MTU). Different networks
use different technologies, and different technologies
allow different maximum sized datagrams. For instance,
the maximum size of a ethernet frame is about 1500
bytes, the maximum size of a frame relay packet data
unit could be anywhere from 622 to 4096 bytes and the
maximum size of an ATM cell is 56 bytes.

A single packet may traverse many different networks
between its source and destination. These different links
might use different network technologies having
different MTU's. Consider the network depicted in
figure 5. The originating computer is directly connected
to an ethernet network, so it generates packets of 1492
bytes (less than the network MTU of 1500 bytes). But
the second network uses frame relay technology with a
PDU size of 1024 bytes. The third network is another
ethernet. The problem is that when the packets of 1492
bytes arrive at the gateway to the second network, the
packets are larger than the second network's MTU.
There are two ways of dealing with this problem. We
will talk about one of these methods: IP fragmentation.

IP Fragmentation

The second network only accepts datagrams of 1024
bytes or less. So if Gateway B receives a packet from
Source A sends a packet that is larger than 1024 bytes,
Gateway A must fragment that large packet into two or
more smaller packets. Gateway B accomplishes this task
by separating the data from the original packet into two

< 32 bits >

< 8 bits > < 8 bits > < 8 Bits > < 8 bits >

Version IHL Type of Service Total length of packet

Identification D
F

M
F Fragment Offset

Time To Live Protocol Header Checksum

Source address

Destination address

Options (0 or more words)

Figure 5: IP Header

TCP/IP Page 4 of 5

smaller chunks, in this case suppose that the first chunk
is 800 bytes and the second chunk is 672 bytes. Then the
gateway copies the original IP header to each of the new
chunks, creating two new IP packets. The gateway sets
the fragment offset field of the first new packet to 0 and
the second new packet to 1. The gateway sets the MF
(More Fragments) bit of the first new packet to 1,
meaning that there are more fragments following this
one. The gateway sets the MF bit of the second packet to
0, meaning that this is the last packet. Then the gateway
transmits both new packets on the frame relay network.

The two fragments could be reassembled into a single
packet at the other gateway or at the destination
computer. From an IP perspective, it doesn't matter
where the reassembly is performed, because other than
the fragment fields, all fragments have identical headers,
so they should all follow the same path.

Don't Fragment

The Don't Fragment (DF) bit in the IP header instructs
gateways and intermediary hosts not to fragment the
packet. If the packet is too big to fit on the next network,
the gateway drops the packet.

MTU Tuning

Consider the internetwork in Figure 5 one last time.
Suppose that Host A's sends many packets that are more
than 1024 bytes long. In order to transmit these packets
over the frame relay network, the gateway splits
fragments each packet. Then the destination reassembles
the fragments. The process of segmenting and
reassembling fragments takes time. Also, the PDUs will
only be about 75% full on the frame relay network.
Since each original packet results in two headers
transmitted on the frame relay network, in this case
fragmentation effectively increases the IP header
overhead by 50%. All of these inefficiencies result in
slower transmission. But these inefficiencies can be
avoided by tuning the MTU at the source. The actual

procedure for tuning the MTU is complicated and time
consuming, but there are programs available on the
internet which will automate the process.

LOCAL NETWORKS
Applications transfer data using TCP. TCP transfers
segments using IP. And IP transfers packets using the
“local network”. Local network is an old and outdated
term. Some of the networks are not local at all: consider
the national ATM networks which many telephone
companies have installed. But the term is defined in
RFC 791 so we will use it. We will discuss several local
network technologies.

Ethernet

Without a doubt, ethernet is now the most widely
deployed local network technology. The Institute of
Electrical and Electronics Engineers (IEEE) defines
many different types of ethernet, but they all have the
same basic frame structure, defined by the IEEE 802.3
standard. Figure 6 depicts the ethernet frame structure.
The seven byte preamble contains the bit patttern
10101010... which helps synchronize the sender's and
receivers' clocks (ethernet is a point-multipoint
technology, so there can be one sender and many
receivers). The eighth byte is 10101011 which delimits
the synchronization field from the rest of the frame.
Ethernet includes six byte source and destination
addresses. These addresses are usually called Media
Access Control (MAC) addresses. There exists an option
for 2 byte MAC addresses, but it is very rarely
implemented. The length of the data field may be zero to
1500 bytes. But the ethernet protocol specifies that there
must be at least 64 bytes from the beginning of the
destination address to the end of the checksum. But the
addresses, length field and checksum only add up to 18
bytes, so if there is less than 46 bytes of data, the
ethernet controller will add the required number of bytes
to the Pad field.

RFC 894 defines the methods for transmitting IP packets
over ethernet networks.

Point to Point Protocol

Internet Standard 51 (RFC 1661) defines the Point to
Point Protocol (PPP). PPP may be used to transmit many
different types of datagrams, but we are only interested
in IP over PPP. PPP is not really a local network – it is a
simple protocol which allows easy communications over
a variety of different types of networks. In a sense, PPP
fits between IP and the Local Network in Figure 7. The

Figure 5: Fragmentation

Figure 6: Ethernet Frame Structure

Preamble Destination address Source address Pad Checksum

Start of
frame delimiter

Da ta

Length of
data field

Bytes: 7 1 6 6 2 0 - 1500 0 - 46 4

TCP/IP Page 5 of 5

two limitations on these networks are that they must be
point-to-point and they must be full-duplex. This means
that there are only two computers on the network and
data transmitted by one computer is received by the
other computer and vice versa. Because PPP may be
transmitted over many different types of local networks,
there must be a standard to define each implementation.
For instance, RFC 1662 describes the common
implementation of PPP over serial cables or telephone
modems. There are more esoteric applications of PPP:
RFC 2516 defines PPP over ethernet (PPPoE) and RFC
2364 describes PPP over ATM (PPPoA). PPPoE is often
used to provide an inexpensive, high bit rate link
between a computer and an xDSL or cable modem.
PPPoA can be used to establish multi-protocol data
channels over ATM virtual circuits.

PUTTING IT ALL TOGETHER
Figure 7, copied from RFC 791, illustrates the idea that
applications use high level protocols such as TCP and
UDP; high level protocols use IP and ICMP; and IP and
ICMP use the local networks. PPP fits between IP and
the local network protocol.

It might also be constructive to consider what happens to
a small chunk of data which is transmitted over a
network using TCP/IP. Suppose an application sends a
small, 30 byte message to another computer. The
application sends the data to a TCP socket. The TCP
module adds a 20 byte header and passes the TCP
segment to the IP module. The IP module adds a 20 byte
header and passes the IP datagram to the ethernet
module. The ethernet module adds a 22 byte header and

a 4 byte checksum and transmits the ethernet frame. The
end result, illustrated in Figure 8, is that a large portion
of the transmitted packet is information about the packet.
We will use this idea in the next lesson: Packet Filtering
Firewall.

REFERENCES
RFC 791 Internet Protocol

RFC 792 Internet Control Message Protocol

RFC 793 Transmission Control Protocol

RFC 768 User Datagram Protocol

Computer Networks Third Edition, Andrew S.
Tanenbaum, Prentice-Hall 1999

Figure 8: Encapsulation

20 byte IP header 50 bytes IP data

20 byte TCP header 30 bytes TCP data

22 byte ethernet header 70 bytes IP data

4 byte
ethernet checksum

30 bytes of user data => 96 bytes transmitted !!

30 bytes

User generates
30 bytes of data

Putting it all
together ...

Figure 7: Protocol Relationships

